If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.



Table of Contents
Showing 1 - 10 of 33 results
  • Updated 13 months ago
    Rayleigh scattering comes from the dipole oscillating at ω 0 induced in the molecule by the electric field of the incident radiation at frequency ω 0 . Raman scattering arises from the dipole moment oscillating at ω 0 ±ω k produced by the modulation of dipole oscillating at ω 0 with molecular vibration at frequency ω k . In other words, the frequencies we observe in Raman scattering are beat frequencies of the radiation frequency ω 0­ and the molecular vibrational frequency ω k . Quantum mechan…
  • Updated 13 months ago
    Because the vibrations have nearly the same frequency, the interaction will be affected if one mode undergoes a frequency shift from deuteration or a solvent effect while the other does not.The molecule most studied for this type of resonance (even what Fermi himself used to explain this phenomena), is carbon dioxide, CO 2 . The three fundamental vibrations are v 1 = 1337 cm -1 , v 2 =667 cm -1 , v 3 =2349 cm -1 . The first overtone of v 2 is v 1 + 2v 2 with symmetries σ g + and (σ g + + δ g + …
  • Updated 13 months ago
    The electronic-state configurations for molecules can be described by the primary quantum number n, the angular momentum quantum number Λ, the spin quantum number S, which remains a good quantum number, the quantum number Σ (S, S-1, ..., -S), and the projection of the total angular momentum quantum number onto the molecular symmetry axis Ω, which can be derived as Ω=Λ+Σ.
  • Updated 13 months ago
    “RS is similar to IR in that they have regions that are useful for functional group detection and fingerprint regions that permit the identification of specific compounds.”[1] While from the different selection rules of Raman Spectroscopy and IR, we can get the Mutual Exclusion rule [5], which says that for a molecule with a center of symmetry, no mode can be both IR and Raman Spectroscopy active.
  • Updated 13 months ago
    Through a careful study of multiple model compounds of known oxidation states and spin configurations, from Ni(I), to low- and high-spin Ni(III) up to Ni(IV), a relationship is derived between the position of the L 3 edge and the ratio of the integrals of the L 3 and L 2 edges.
  • Updated 13 months ago
    This rule states that the absorption coefficient is proportional to the square of the transition moment integral, or |<i|H|f>| 2 , where i is the unaffected core energy level before it interferes with the neighboring atoms, H is the interaction, and f is the final state in which the core energy level has been affected and a photoelectron has been ejected.
  • Updated 13 months ago
    This page has no content. Enrich ChemWiki by contributing.
  • Updated 13 months ago
    The data acquired is typically in the form of an light intensity which can in turn be interpreted as absorbance, transmittance, reflectance, or photon scattering depending on the instrument and technique being used. In order for data from time-resolved spectroscopy to be useful, the spectroscopy must be suited to the time scale of the process of interest. In this case, a signal originally measured in the time domain can be converted into a signal in the frequency domain.
  • Updated 13 months ago
    In order to observe resonance, the frequency of the microwaves must correspond to the splitting of the spin states of the electron, which is determined by the strength of the magnetic field. The peaks seen in figure 12 correspond to specific quantitative parameters that describe the coupling of the electron and the nucleus, thus corresponding to the distance between the nuclei and the electron.
  • Updated 13 months ago
    Please select a ChemWiki module topic below by typing your name next to the topic you desire below. (Use the Edit page function.) Only one topic per student and no erasing other students' names. It is expected that the modules from this graduate level class will be of superior quality when compared to existing modules on the ChemWiki. LARSEN BEFORE THE END OF THE QUARTER The Power of the Fourier Transform for Spectroscopists Metal to Ligand and Ligand to Metal Charge Transfer Bands
+(type:wiki type:document type:image type:binary) +(+namespace:main +tag:graduate)
Filter Results By:

    Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use