Skip to main content
Chemistry LibreTexts

6.3: Manipulating Equilibrium Constants

  • Page ID
    5708
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We will take advantage of two useful relationships when working with equilibrium constants. First, if we reverse a reaction’s direction, the equilibrium constant for the new reaction is simply the inverse of that for the original reaction. For example, the equilibrium constant for the reaction

    \[\textrm A+2\textrm B\rightleftharpoons A\textrm B_2\hspace{5mm}K_1=\mathrm{\dfrac{[AB_2]}{[A][B]^2}}\]

    is the inverse of that for the reaction

    \[A\textrm B_2\rightleftharpoons\textrm A + 2\textrm B\hspace{5mm}K_2=(K_1)^{-1}=\dfrac{[A][\textrm B]^2}{[\textrm{AB}_2]}\]

    Second, if we add together two reactions to obtain a new reaction, the equilibrium constant for the new reaction is the product of the equilibrium constants for the original reactions.

    \[\mathrm{A+C\rightleftharpoons AC}\hspace{4mm}K_3=\mathrm{\dfrac{[AC]}{[A][C]}}\]

    \[\mathrm{AC+C\rightleftharpoons AC_2}\hspace{5mm}K_4=\mathrm{\dfrac{[AC_2]}{[AC][C]}}\]

    \[\mathrm{A+2C\rightleftharpoons AC_2}\hspace{5mm}K_5=K_3\times K_4=\mathrm{\dfrac{[AC]}{[A][C]}\times\dfrac{[AC_2]}{[AC][C]}=\dfrac{[AC_2]}{[A][C]^2}}\]

    Example 6.1

    Calculate the equilibrium constant for the reaction

    \[\mathrm{2A+B\rightleftharpoons C+3D}\]

    given the following information

    \[\begin{align}
    &\textrm{Rxn 1: A + B} \rightleftharpoons \textrm D &&K_1 = 0.40\\
    &\textrm{Rxn 2: A + E} \rightleftharpoons \textrm{C + D + F} &&K_2 = 0.10\\
    &\textrm{Rxn 3: C + E} \rightleftharpoons \textrm B &&K_3 = 2.0\\
    &\textrm{Rxn 4: F + C} \rightleftharpoons \textrm{D + B} &&K_4 = 5.0
    \end{align}\]

    Solution

    The overall reaction is equivalent to

    \[\textrm{Rxn 1 + Rxn 2} - \textrm{Rxn 3 + Rxn 4}\]

    Subtracting a reaction is equivalent to adding the reverse reaction; thus, the overall equilibrium constant is

    \[K=\dfrac{K_1\times K_2\times K_4}{K_3}=\dfrac{0.40\times0.10\times5.0}{2.0}=0.10\]

    Practice Exercise 6.1

    Calculate the equilibrium constant for the reaction

    \[\mathrm{C+D+F\rightleftharpoons 2A+3B}\]

    using the equilibrium constants from Example 6.1.

    Click here to review your answer to this exercise.


    This page titled 6.3: Manipulating Equilibrium Constants is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.