If you like us, please share us on social media.

The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki: The Dynamic Chemistry E-textbook > Analytical Chemistry > Electrochemistry > Nernst Equation

MindTouch

Copyright (c) 2006-2014 MindTouch Inc.

http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense,
resell, rent, lease, distribute, market, commercialize or otherwise
transfer rights or usage to: (a) the Software, (b) any modified version
or derivative work of the Software created by you or for you, or (c)
MindTouch Open Source (which includes all non-supported versions of
MindTouch-developed software), for any purpose including timesharing or
service bureau purposes; (ii) remove or alter any copyright, trademark
or proprietary notice in the Software; (iii) transfer, use or export the
Software in violation of any applicable laws or regulations of any
government or governmental agency; (iv) use or run on any of your
hardware, or have deployed for use, any production version of MindTouch
Open Source; (v) use any of the Support Services, Error corrections,
Updates or Upgrades, for the MindTouch Open Source software or for any
Server for which Support Services are not then purchased as provided
hereunder; or (vi) reverse engineer, decompile or modify any encrypted
or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

- 1. Introduction
- 2. References
- 3. Outside Links

The *Nernst Equation* enables the determination of cell potential under non-standard conditions. It relates the measured cell potential to the reaction quotient and allows the accurate determination of equilibrium constants (including solubility constants).

The *Nernst Equation* is derived from the Gibbs free energy **under standard conditions**.

\[E^o = E^o_{reduction} - E^o_{oxidation} \tag{1}\]

\(\Delta{G}\) is also related to \(E\) under general conditions (standard or not) via

\[\Delta{G} = -nFE \tag{2}\]

with

- \(n\) is the number of electrons transferred in the reaction (from balanced reaction),
- \(F\) is the Faraday constant (96,500 C/mol), and
- \(E\) is potential difference.

Under standard conditions, equation 2 is then

\[\Delta{G}^{o} = -nFE^{o}. \tag{3}\]

Hence, when \(E^o\) is positive, the reaction is spontaneous and when \(E^o\) is negative, the reaction is non-spontaneous. From thermodynamics, the Gibbs energy change under non-standard conditions can be related to the Gibbs energy change under standard equations via

\[\Delta{G} = \Delta{G}^o + RT \ln Q \tag{4}\]

Substituting \(\Delta{G} = -nFE\) and \(\Delta{G}^{o} = -nFE^{o}\) into equation 4, we have:

\[-nFE = -nFE^o + RT \ln Q \tag{5}\]

Divide both sides of the equation above by \(-nF\), we have

\[E = E^o - \dfrac{RT}{nF} \ln Q \tag{6}\]

Equation 6 can be rewritten in the form of \(\log_{10}\):

\[E = E^o - \dfrac{2.303 RT}{nF} \log Q \tag{Generalized Nernst Equation}\]

At standard temperature T = 298 K, the \(\frac{2.303 RT}{F}\) term equals 0.0592 V and this equation turns into:

\[E = E^o - \dfrac{0.0592\, V}{n} \log Q \tag{Nernst Equation @ 298 K}\]

The equation above indicates that the electrical potential of a cell depends upon the reaction quotient \(Q\) of the reaction. As the redox reaction proceeds, reactants are consumed, and thus concentration of reactants decreases. Conversely, the products concentration increases due to the increased in products formation. As this happens, cell potential gradually *decreases *until the reaction is at equilibrium, at which \(\Delta{G} = 0\). At equilibrium, the reaction quotient \(Q = K_{eq}\). Also, at equilibrium, \(\Delta{G} = 0\) and \(\Delta{G} = -nFE\), so \(E = 0\).

Therefore, substituting \(Q = K_{eq}\)_{ }and \(E = 0\) into the Nernst equation, we have:

\[0 = E^o - \dfrac{RT}{nF} \ln K_{eq} \tag{7}\]

At standard conditions, the equation above simplifies into:

\[0 = E^o - \dfrac{0.0592\, V}{n} \log K_{eq} \tag{8}\]

This equation can be rearranged into:

\[\log K_{eq} = \dfrac{nE^o}{0.0592\, V} \tag{9}\]

The equation above indicates that the equilibrium constant \(K_{eq}\)** is proportional to the standard potential** of the reaction. Specifically, when:

- \(K > 1, E^o > 0\), reaction favors products formation.
- \(K < 1, E^o < 0\), reaction favors reactants formation.

This result fits Le Châtlier's Principle, which states that when a system at equilibrium experiences a change, the system will minimize that change by shifting the equilibrium in the opposite direction.

Example 1 |
---|

The \(E^{o}_{cell} = +1.10 \; V\) for the Zn-Cu redox reaction: \[Zn_{(s)} + Cu^{2+}_{(aq)} \rightleftharpoons Zn^{2+}_{(aq)} + Cu_{(s)}.\] What is the equilibrium constant for this reversible reaction? SOLUTION Under standard conditions, \([Cu^{2+}] = [Zn^{2+}] = 1.0\, M\) and T = 298 K. As the reaction proceeds, \([Cu^{2+}]\) decreases as \([Zn^{2+}]\) increases. Lets say after one minute, \([Cu^{2+}] = 0.05\, M\) while \([Zn^{2+}] = 1.95\, M\). According to the Nernst equation, the cell potential after 1 minute is: \[E = E^o - \dfrac{0.0592 V}{n} \log Q\] \[E = 1.10V - \dfrac{0.0592 V}{2} \log\dfrac{1.95 \; M}{0.05 \; M}\] \[E = 1.05 \; V\] As you can see, the initial cell potential is \(E = 1.10\, V\), after 1 minute, the potential drops to 1.05 V. This is after 95% of the reactants have been consumed. As the reaction continues to progress, more \(Cu^{2+}\) will be consumed and more \(Zn^{2+}\) will be generated (at a 1:1 ratio). As a result, the cell potential continues to decrease and when the cell potential drops down to 0, the concentration of reactants and products stops changing. This is when the reaction is at equilibrium. From from equation 9, the \(K_{eq}\) can be calculated from \[\log K_{eq} = \dfrac{2 \times 1.10\, V}{0.0592\,V}\] \[\log K_{eq} = 37.2\] \[K_{eq} = 10^{37.2}= 1.58 \times 10^{37}\] This make sense from a Le Châtlier's Principle, since the reaction strongly favors the products over the reactants to result in a large \(E^{o}_{cell}\) of 1.103 V. Hence, the cell is greatly out of equilibrium under standard conditions. Reactions that are just weakly out of equilibrium will have smaller \(E^{o}_{cell}\) values (neglecting a change in \(n\) of course). |

- Atkins, Peter and de Paula, Julio.
*Physical Chemistry for the Life Sciences*. New York: W.H. Freeman and Company. p. 214-222. - Sherwood, Lauralee.
*Human Physiology 6th edition*. Thompson Corp. 2007. p. 77

Last Modified

00:25, 18 Jun 2014

**Analytical Chemistry**

**Biological Chemistry**

**Inorganic Chemistry**

**Organic Chemistry**

**Physical Chemistry**

**Theoretical Chemistry**

**Cal Poly Pomona**

**Diablo Valley College**

**Florida State U**

**Hope College**

**Howard University**

**Purdue**

**Sacramento City College**

**UC Davis**

**UC Irvine**

**Zumdahl 9 ^{ed}**

An NSF funded Project

- © Copyright 2014 Chemwiki

Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use