If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

GeoWiki.png
ChemWiki: The Dynamic Chemistry E-textbook > Biological Chemistry > Drug Activity > Enzyme Inhibition

MindTouch
Copyright (c) 2006-2014 MindTouch Inc.
http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Enzyme Inhibition

Mechanisms of Drug Actions by Enzyme Inhibition. Review - Enzymes and Review - Enzymes Inhibitors

Direct Enzyme Inhibition

Although activation of enzymes may be exploited therapeutically, most effects are produced by enzyme inhibition. Inhibition caused by drugs may be either reversible or irreversible. A reversible situation occurs when an equilibrium can be established between the enzyme and the inhibitory drug. A competitive inhibition occurs when the drug, as "mimic" of the normal substrate competes with the normal substrate for the active site on the enzyme. Concentration effects are important for competitive inhibition.

573compinhibit.gif

In noncompetitive inhibition, the drug combines with an enzyme, at a different site other than the active site. The normal substrate can not displace the drug from this site and can not interact with the active either since the shape of the enzyme has been altered. Among the many types of drugs that act as enzyme inhibitors the following may be included: antibiotics, acetylchlolinesterase agents, certain antidepressants such as monoamine oxidase inhibitors and some diuretics.

Suppression of Gene Function

Many drugs act as suppressors of gene function including antibiotics, fungicides, antimalarials and antivirals. Gene function may be suppressed in several steps of protein synthesis or inhibition of nucleic acid biosynthesis. Many substances which inhibit nucleic acid biosynthesis are very toxic since the drug is not very selective in its action between the parasite and host.

Antimetabolites

The strategy of chemotherapy consists of exploiting the biochemical differences between the host and parasite cells. Metabolites are any substances used or produced by biochemical reactions. A drug which possesses a remarkably close chemical similarity (mimic) to the normal metabolite is called an antimetabolite. The antimetabolite enters a normal synthetic reaction by "fooling" an enzyme and producing a counterfeit metabolite. The counterfeit metabolite inhibits another enzyme or is an unusable fraudulent end product which cannot be utilized by the cell for growth or reproduction. Such antimetabolites have been used as antibacterial or anticancer agents.

573noncpinhibit.gif

Contributors


You must to post a comment.
Last Modified
18:03, 1 Oct 2013

Tags

Classifications

(not set)
(not set)

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use