If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki: The Dynamic Chemistry E-textbook > Biological Chemistry > Proteins > Amino Acids > Reactions of Amino Acids > Amino Acid Reactions

Copyright (c) 2006-2014 MindTouch Inc.

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Amino Acid Reactions

Amino acids react with each other in a typical acid-base neutralization reaction to form a salt.

The reaction is simply the transfer of the -H (positive ion) from the acid to the amine and the attraction of the positive and negative charges. The acid group becomes negative, and the amine nitrogen becomes positive because of the positive hydrogen ion.

For example in the graphic on the left - top, glycine (gly) and alanine (ala) may just interact in the zwitterion form by an attraction of the positive (amine) of the alanine and negative (carboxyl acid) charges to form the salt.


Salt formation of Side Chains

A more important interaction for protein tertiary structure is the interaction of the acid and base "side chains". If the amino acid has an extra acid or amine on the "side chain", these are used in the salt formation. For example in the left-bottom graphic, Aspartic acid (asp) has a side chain that forms a salt with the amine on the lysine (lys) side chain. The hydrogen ion (red) moves to the amine nitrogen resulting in the salt with the attraction of the positive and negative charges.

Disulfide Bridges and Oxidation-Reduction

The amino acid cysteine undergoes oxidation and reduction reactions involving the -SH (sulfhydryl group). The oxidation of two sulfhydryl groups results in the formation of a disulfide bond by the removal of two hydrogens. The oxidation of two cysteine amino acids is shown in the graphic on the left. An unspecified oxidizing agent (O) provides an oxygen which reacts with the hydrogen (red) on the -SH group to form water. The sulfurs (yellow) join to make the disulfide bridge. This is an important bond to recognize in protein tertiary structure.


The reduction of a disulfide bond is the opposite reaction which again leads to two separate cysteine molecules. Remember that reduction is the addition of hydrogen.


Last modified
20:36, 3 Dec 2013


This page has no custom tags.



Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use