If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

GeoWiki.png
ChemWiki: The Dynamic Chemistry E-textbook > Biological Chemistry > Vitamins, Cofactors and Coenzymes > Nicotinamide Adenine Dinucleotide

MindTouch
Copyright (c) 2006-2014 MindTouch Inc.
http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Nicotinamide Adenine Dinucleotide

In the graphic below, the structure for the coenzyme, NAD+, Nicotinamide Adenine Dinucleotide is shown. Nicotinamide is from the niacin vitamin. The NAD+ coenzyme is involved with many types of oxidation reactions where alcohols are converted to ketones or aldehydes. It is also involved in the first enzyme complex 1 of the electron transport chain.

Role of NAD+

One role of \(NAD^+\) is to initiate the electron transport chain by the reaction with an organic metabolite (intermediate in metabolic reactions). This is an oxidation reaction where 2 hydrogen atoms (or 2 hydrogen ions and 2 electrons) are removed from the organic metabolite. (The organic metabolites are usually from the citric acid cycle and the oxidation of fatty acids--details in following pages.) The reaction can be represented simply where M = any metabolite.

\[ MH_2 + NAD^+ \rightarrow NADH + H^+ + M: + \text{energy}\]

One hydrogen is removed with 2 electrons as a hydride ion (\(H^-\)) while the other is removed as the positive ion (\(H+\)). Usually the metabolite is some type of alcohol which is oxidized to a ketone.

594NAD.gif    571NAD.gif

Alcohol Dehydrogenase

The NAD+ is represented as cyan in below the graphic. The alcohol is represented by the space filling red, gray, and white atoms. The reaction is to convert the alcohol, ethanol, into ethanal, an aldehyde.

\[ CH_3CH_2OH + NAD^+ \rightarrow CH_3CH=O + NADH + H^+ \]

This is an oxidation reaction and results in the removal of two hydrogen ions and two electrons which are added to the NAD+, converting it to NADH and H+. This is the first reaction in the metabolism of alcohol. The active site of ADH has two binding regions. The coenzyme binding site, where NAD+ binds, and the substrate binding site, where the alcohol binds. Most of the binding site for the NAD+ is hydrophobic as represented in green. Three key amino acids involved in the catalytic oxidation of alcohols to aldehydes and ketones. They are ser-48, phe 140, and phe 93.

571ADH.gif

Contributors

You must to post a comment.
Last Modified
17:00, 25 Feb 2014

Tags

Classifications

(not set)
Lower Divisional

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use