If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

GeoWiki.png
ChemWiki: The Dynamic Chemistry E-textbook > Inorganic Chemistry > Crystal Field Theory > Metals, Tetrahedral and Octahedral

MindTouch
Copyright (c) 2006-2014 MindTouch Inc.
http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Metals, Tetrahedral and Octahedral

Table of Contents

In an octahedral complex, the d and dx²−y² orbitals are increased in energy the most. We refer to the d and dx²−y² orbitals collectively as the eg d orbitals.

The images below illustrate the orbitals d (left) and dx²−y² (right) and their positioning within an octahedral complex. The central transition metal atom or ion is grey, the six ligands are red and the orbitals are yellow.

ML6-3dz2-3D-phaseless.png ML6-3dx2-y2-3D-phaseless.png

Let us continue to consider an octahedral complex. The remaining d orbitals, dxy, dxz and dyz see their energy increase to a lesser extent. We refer to the dxy, dxz and dyz orbitals collectively as the t2g d orbitals.

The images below illustrate these three orbitals in relation to the central metal atom and ligands in an octahedral complex. Compare these images of the t2g orbitals with those of the eg above. You may be able to see that the t2g orbitals are, on average, further away from the ligands than the eg orbitals. This is the reason for splitting.

ML6-3dxy-3D-phaseless.png ML6-3dxz-3D-phaseless.png ML6-3dyz-3D-phaseless.png

Hybrid orbital theory can be used to describe how metals bond to ligands. When metals bond to ligands, magnetic data shows that some electrons are paired when there is no obvious reason for them to be paired. Molecular orbitals begin to account for this phenomenon by allowing wave functions to interfere in a constructive, low energy (bonding) or destructive, or high energy (antibonding) manner. Thus, the electrons can fill the lowest energy molecular orbitals available to them. However, the electron pairing may be different if the electrons were allowed to fill the lowest energy atomic orbitals available to them.

 octahedral2.JPG

This diagram shows the field splitting of a metal with ligands in an octahedral configuration. The thick horizontal lines represent atomic orbitals of the metal (left) and ligands (right). The colors correspond to s (black), p (green) and d (red) orbitals. The middle column of horizontal lines represents molecular orbitals made of bonding (lower energy) and antibonding (higher energy) components.

If the ligands are oriented on the cartesian coordinate axes, the metal will still own 3 d orbitals, xy, xz, and xz, which do not intersect (and therefore do not interact) with the ligands. These are considered "nonbonding" orbitals, and are represented by dotted lines in the diagram.

References

  1. Jean, Yves; "molecular orbitals of transition metal complexes"; Oxford University Press, 2005

You must to post a comment.
Last Modified
00:37, 18 Nov 2014

Tags

Classifications

(not set)
(not set)

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use