If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

GeoWiki.png
ChemWiki: The Dynamic Chemistry E-textbook > Inorganic Chemistry > Electronic Configurations > Aufbau Principle

MindTouch
Copyright (c) 2006-2014 MindTouch Inc.
http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Aufbau Principle

Table of Contents
No headers

Aufbau comes from the German word "Aufbauen" which means "to build". In essence when writing electron configurations we are building up electron orbitals as we proceed from atom to atom. As we write the electron configuration for an atom, we will fill the orbitals in order of increasing atomic number. The Aufbau principle originates from the Pauli’s exclusion principle which says that no two fermions (e.g., electrons) in an atom can have the same set of quantum numbers, hence they have to "pile up" or "build up" into higher energy levels. How the electrons build up is a topic of electron configurations.

 

Example

If we follow the pattern across a period from B (Z=5) to Ne (Z=10) the number of electrons increase and the subshells are filled. Here we are focusing on the p subshell in which as we move towards Ne, the p subshell becomes filled.

  • B (Z=5) configuration: 1s2 2s2 2p1
  • C (Z=6) configuration: 1s2 2s2 2p2
  • N (Z=7) configuration: 1s2 2s2 2p3
  • O (Z=8) configuration: 1s2 2s2 2p4
  • F (Z=9) configuration: 1s2 2s2 2p5
  • Ne (Z=10) configuration: 1s2 2s2 2p6

You must to post a comment.
Last Modified
09:33, 9 Jul 2014

Tags

Classifications

(not set)
(not set)

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use