Interesting online CONFCHEM discussion going on right now on the ChemWiki and
greater STEMWiki Hyperlibary project. Come join the discussion.

ChemWiki: The Dynamic Chemistry Hypertext > Inorganic Chemistry > Electronic Structure of Atoms and Molecules > Electronic Configurations > Pauli Exclusion Principle

Pauli Exclusion Principle

Table of Contents

The Pauli Exclusion Principle states that, in an atom or molecule, no two electrons can have the same four electronic quantum numbers. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. This means if one is assigned an up-spin ( +1/2), the other must be down-spin (-1/2).

Electrons in the same orbital have the same first three quantum numbers, e.g., \(n=1\), \(l=0\), \(m_l=0\) for the 1s subshell. Only two electrons can have these numbers, so that their spin moments must be either \(m_s = -1/2\) or \(m_s = +1/2\). If the 1s orbital contains only one electron, we have one \(m_s\) value and the electron configuration is written as 1s1 (corresponding to hydrogen). If it is fully occupied, we have two \(m_s\) values, and the electron configuration is 1s2 (corresponding to helium). Visually these two cases can be represented as


As you can see, the 1s subshell can hold only two electrons and when filled the electrons have opposite spins.


  • Sarah Faizi (University of California Davis)
  • Dr. Craig Fisher (Japan Fine Ceramics Center)

You must to post a comment.
Last modified
09:22, 11 Sep 2015



(not set)
(not set)

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at Questions and concerns can be directed toward Prof. Delmar Larsen (, Founder and Director. Terms of Use