If you like us, please share us on social media, tell your friends, tell your professor or consider building or adopting a Wikitext for your course.

ChemWiki: The Dynamic Chemistry Hypertext > Inorganic Chemistry > Molecular Geometry > Trigonal Pyramid Molecular Geometry

Trigonal Pyramid Molecular Geometry

  AX5 AX5
Shape: trigonal bipyramidal
  Steric Number: 5
  Lone Pairs: 0
  Polar/NonPolar: NonPolar
  Hybridization: sp3d
  Examples: PCl5, SbF5

NOTES: This molecule is made up of 5 sp3d hybrid orbitals. Three orbitals are arranged around the equator of the molecule with bond angles of 120o. Two orbitals are arranged along the vertical axis at 90o from the equatorial orbitals. The shape of the orbitals is trigonal bipyramidal. Since there is an atom at the end of each orbital, the shape of the molecule is also trigonal bipyramidal.


An example of trigonal pyramid molecular geometry that results from tetrahedral electron pair geometry is NH3. The nitrogen has 5 valence electrons and thus needs 3 more electrons from 3 hydrogen atoms to complete its octet. This then leaves a lone electron pair that is not bonded to any other atom. The three hydrogen atoms and the lone electron pair are as far apart as possible at nearly 109o bond angle. This is tetrahedral electron pair geometry.

The lone electron pairs exerts a little extra repulsion on the three bonding hydrogen atoms to create a slight compression to a 107o bond angle.The molecule is trigonal pyramid molecular geometry because the lone electron pair, although still exerting its influence, is invisible when looking at molecular geometry. The molecule is three dimensional as opposed to the boron hydride case which was a flat trigonal planar molecular geometry because it did not have a lone electron pair.


Hydronium Ion

In this example, H3O+, the Lewis diagram shows O at the center with one lone electron pair and three hydrogen atoms attached. Compare this with ammonia, NH3, which also has a lone pair. Compare it to the water molecule which has 2 hydrogen atoms and 2 lone electron pairs.. The third hydrogen bonds to the water molecule as a hydrogen ion (no electrons) bonding to the lone pair on the oxygen.

This shows tetrahedral geometry for the electron pair geometry and and trigonal pyramid the molecular geometry. Hydronium ion is a more accurate method to depict the hydrogen ion associated with acid properties of some molecules in water solution.


Sulfite Ion

In this example, SO32-, the Lewis diagram shows sulfur at the center with one lone electron pair. The sulfur and and one oxygen are bonded through a double bond which counts as "one electron pair". Hence the molecule has four electron pairs and is tetrahedral.

The Lewis diagram is as follows:
S = 6 e-
O = 6e- x 3 = 18e-
2- charge = 2e-
Total electrons = 26

Sulfur atoms and all oxygen atoms have an octet of electrons. Sulfite and bisulfite ions are used as a preservative in wines. It is also found as a component of acid rain, formed by the interaction of sulfur dioxide and water molecules.



Viewing 1 of 1 comments: view all
Posted 23:42, 9 Aug 2014
Viewing 1 of 1 comments: view all
You must to post a comment.
Last modified
18:31, 1 Oct 2013



(not set)
(not set)
(not set)






This material is based upon work supported by the National Science Foundation under Grant Numbers 1246120, 1525057, and 1413739.

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use