If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

GeoWiki.png
ChemWiki: The Dynamic Chemistry E-textbook > Organic Chemistry > Ethers > Synthesis of Ethers > Ether Synthesis

MindTouch
Copyright (c) 2006-2014 MindTouch Inc.
http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Ether Synthesis

Table of Contents

Ethers are usually prepared from alcohols or their conjugate bases. One important procedure, known as the Williamson Ether Synthesis, proceeds by an SN2 reaction of an alkoxide nucleophile with an alkyl halide. Reactions #1 and #2 below are two examples of this procedure. When applied to an unsymmetrical ether, as in this case, there are two different combinations of reactants are possible. Of these one is usually better than the other. Since alkoxide anions are strong bases, the possibility of a competing E2 elimination must always be considered. Bearing in mind the factors that favor substitution over elimination, a 1º-alkyl halide should be selected as a preferred reactant whenever possible. Thus, reaction #1 gives a better and cleaner yield of benzyl isopropyl ether than does reaction #2, which generates considerable elimination product.

ethersyn.gif

A second general ether synthesis, alkoxymercuration, is patterned after the oxymercuration reaction. Reactions #3 and #4 are examples of this two-step procedure. Note that the alcohol reactant is used as the solvent, and a trifluoroacetate mercury (II) salt is used in preference to the acetate (trifluoroacetate anion is a poorer nucleophile than acetate). The mechanism of alkoxymercuration is similar to that of oxymercuration, with an initial anti-addition of the mercuric species and alcohol being followed by reductive demercuration.

Acid-catalyzed dehydration of small 1º-alcohols constitutes a specialized method of preparing symmetrical ethers. As shown in the following two equations, the success of this procedure depends on the temperature. At 110º to 130 ºC an SN2 reaction of the alcohol conjugate acid leads to an ether product. At higher temperatures (over 150 ºC) an E2 elimination takes place.

 

2 CH3CH2-OH   +   H2SO4 130 ºC
CH3CH2-O-CH2CH3   +   H2O
CH3CH2-OH   +   H2SO4 150 ºC
CH2=CH2   +   H2O

Contributors

You must to post a comment.
Last Modified
10:14, 27 Nov 2013

Tags

Classifications

Vet4
Lower Divisional

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use