If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki: The Dynamic Chemistry E-textbook > Organic Chemistry > Organic Chemistry With a Biological Emphasis > Chapter 11: Nucleophilic carbonyl addition reactions > Section 11.4: Acetals and ketals

Copyright (c) 2006-2014 MindTouch Inc.

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Section 11.4: Acetals and ketals

11.4A: Glycosidic bonds revisited

When a hemiacetal (or hemiketal) is subjected to nucleophilic attack by a second alcohol molecule, the result is called an acetal (or ketal).


While the formation of a hemiacetal from an aldehyde and an alcohol (step 1 above) is a nucleophilic addition, the formation of an acetal from a hemiacetal (step 2 above) is a nucleophilic substitution reaction, with the original carbonyl oxygen leaving as a water molecule.

Recall from section 9.2 the structure of the glycosidic bond between two glucose molecules in a cellulose chain:


If you look carefully at C1 of each glucose unit, you should recognize that this glycosidic bond is, in fact, an acetal. 

The formation of the glycosidic bond in cellulose and other carbohydrates  - a hemiacetal to acetal conversion - is catalyzed by a class of enzyme called  glycosyltransferases.  In a glycosyltransferase reaction, the carbonyl oxygen does not leave as a water molecule, but rather as part of a uridine nucleotide diphosphate group.  This represents another way to convert water into a better leaving group.



Exercise 11.1: In the first reaction of the scheme shown above, uridine triphosphate (UTP) serves as a phosphoryl group donor.   Which phosphate group is the electrophile in this step, the alpha, beta, or gamma?


Let's take a look at the formation of a new glucose-glucose acetal bond in cellulose synthesis as an example.  The anomeric carbon of a glucopyranose -UDP derivative is attacked from above by an alcohol, specifically the hydroxyl on C4 of the terminal glucose on the growing cellulose chain.  The UDP leaving group is displaced, and inversion of stereochemistry results at the anomeric carbon.


You may recognize the similarity of this reaction to the glycosidase reactions we studied earlier (section 9.2). Here, though, the attacking nucleophile is an alcohol group rather than a water molecule.

Glycosyltransferase reactions can also take place either with inversion of configuration at the anomeric carbon (such as in the reaction pictured above) or with retention of configuration.  However, it is not yet clear whether 'retaining glycosyltransferase' reactions proceed through a double-displacement mechanism like the retaining glycosidases we have already studied, or though some alternate mechanism. See Nature Structural Biology 2001, 8, 98 for an interesting discussion of this problem.


11.4B: Synthetic parallel - cyclic acetals/ketals as 'protecting groups' for ketones and aldehydes.

Although enzymes are very good at controlling the course of an organic reaction, human synthetic chemists are often challenged when performing reactions in which several regiochemical outcomes are possible. Consider what might happen, for example, if a synthetic chemist attempted to displace a bromine in a nucleophilic substitution:


There is a problem here: there are actually two electrophilic atoms for the nucleophile to attack!  Addition to the carbonyl could also occur:


One solution to this problem is to 'protect', or 'mask' the ketone functional group by converting it temporarily into a cyclic ketal.  This is done by reacting the ketone starting material with a diol and a catalytic amount of acid. 


Once the acid is neutralized, the ketal group will not react with basic or nucleophilic reagents.  The desired nucleophilic substitution reaction can now be carried out, and then the ketal can be converted back into a ketone through acid-catalyzed hydrolysis:


Synthetic chemists have developed a wide range of methods to 'protect' different functional groups, including not just carbonyls but also alcohols, diols, phenols, and amines.  To be effective, a protecting group must react readily and selectively with a particular functional group, be stable to the subsequent chemistry that is taking place elsewhere on the molecule, and then must be easy to remove in order to regenerate the original functional group.


Exercise 11.2: Propose a mechanism for a) formation, and b) hydrolysis of  the cyclic ketal in the reaction above.


. . . on to the next section . . .


You must to post a comment.
Last Modified
22:14, 26 Mar 2014



Lower Divisional

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use