Skip to main content
Chemistry LibreTexts

Chapter 13 Solutions

  • Page ID
    1111
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In-chapter exercises

    E13.1:

    image658.png

    E13.2:

    There are many possibilities: if there is no alpha-proton present, there is no enol form possible. Here are three such compounds:

    image660.png

    E13.3:

    image662.png

    E13.4: Propose a likely mechanism for glutamate racemase, showing stereochemistry throughout.

    image664.png

    E13.5:

    a)

    image666.png

    image668.png

    b)

    image670.png

    E13.6:

    image672.png

    E13.7:

    image674.png

    E13.8:

    image676.png

    E13.9:

    image678.png

    E13.10:

    image680.png

    E13.11:

    a)

    image682.png

    b)

    image684.png

    image686.png

    c) The relationship is tautomeric: A and B are keto forms of the actual product. Usually keto forms are more stable than enols, but in the case of phenols the enol form is aromatic and is thus much lower in energy.

    E13.12:

    image688.png

    E13.13:

    image690.png

    E 13.14:

    image692.png

    End-of-chapter problems

    P13.1: Propose a mechanism for this early reaction in the biosynthesis of the isoprenoid building blocks:

    image694.png

    P13.2:

    image696.png

    P13.3:

    image698.png

    P13.4:

    image700.png

    P13.5:

    a)

    image702.png

    b)

    image704.png

    c)

    image706.png

    P13.6:

    image708.png

    P13.7:

    image710.png

    P13.8:

    image712.png

    P13.9:

    image714.png

    P13.10:

    image716.png

    P13.11:

    image718.png

    P13.12:

    image720.png

    P13.13:

    image722.png

    P13.14: This is a Wittig reaction, followed by a transesterification (see J. Org. Chem. 1985, 50, 3420)

    image724.png

    P13:15: Reactions a and b are acetoacetic ester syntheses; c is a malonic ester synthesis (section 13.6A).

    image726.png

    P13.16: Reaction a is an acetoacetic ester synthesis, b is a malonic ester synthesis, and c is a Stork enamine alkylation (section 13.6A)

    image728.png

    P13.17:

    image730.png

    image732.png

    image734.png

    P13.18:

    a)

    image736.png

    c)

    image738.png


    Challenge problems

    C13.1:

    image740.png


    This page titled Chapter 13 Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.


    This page titled Chapter 13 Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Tim Soderberg via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.