Skip to main content
Chemistry LibreTexts

5: Experimental Methods

  • Page ID
    3536
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The basic method of obtaining the information needed to determine rate constants and reaction orders is to bring the reactants together and then measure successive changes in concentration of one of the components as a function of time. Two important requirements are:

    • The time required to take a measurement must be very short compared to the time the reaction takes to run to completion;
    • The temperature must be held constant — something than can pose a problem if the reaction is highly exothermic.

    Measuring the concentration of a reactant or product directly — that is by chemical analysis—is awkward and seldom necessary. When it cannot be avoided, the reaction sample must usually be quenched in some way in order to stop any further change until its composition can be analyzed. This may be accomplished in various ways, depending on the particular reaction. For reactions carried out in solution, especially enzyme-catalyzed ones, it is sometimes practical to add a known quantity of acid or base to change the pH, or to add some other inhibitory agent.

    kinetic_times.png

    More commonly, however, the preferred approach is to observe some physical property whose magnitude is proportional to the extent of the reaction.

    Contributors and Attributions

    Stephen Lower, Professor Emeritus (Simon Fraser U.) Chem1 Virtual Textbook


    This page titled 5: Experimental Methods is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Stephen Lower via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.