If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

GeoWiki.png
ChemWiki: The Dynamic Chemistry E-textbook > Physical Chemistry > Quantum Mechanics > 3. The Tools of Quantum Mechanics > Bra-Ket Notation > Eigenvalues and eigenvectors

MindTouch
Copyright (c) 2006-2014 MindTouch Inc.
http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Eigenvalues and eigenvectors

Table of Contents

In general, the ket $X\vert A\rangle$ is not a constant multiple of $\vert A\rangle$. However, there are some special kets known as the eigenkets of operator $X$. These are denoted

\begin{displaymath}
\vert x'\rangle, \vert x''\rangle, \vert x'''\rangle \ldots,
\end{displaymath} (42)

and have the property

\begin{displaymath}
X\vert x'\rangle = x'\vert x'\rangle,   X\vert x''\rangle = x''\vert x''\rangle \dots,
\end{displaymath} (43)

where $x'$, $x''$, $\ldots$ are numbers called eigenvalues. Clearly, applying $X$ to one of its eigenkets yields the same eigenket multiplied by the associated eigenvalue.

Consider the eigenkets and eigenvalues of a Hermitian operator $\xi$. These are denoted

\begin{displaymath}
\xi \vert\xi'\rangle = \xi' \vert\xi' \rangle,
\end{displaymath} (44)

where $\vert\xi'\rangle$ is the eigenket associated with the eigenvalue $\xi'$. Three important results are readily deduced:

(i) The eigenvalues are all real numbers, and the eigenkets corresponding to different eigenvalues are orthogonal. Since $\xi$ is Hermitian, the dual equation to Eq. (44) (for the eigenvalue $\xi''$) reads

\begin{displaymath}
\langle \xi''\vert\xi = \xi''^\ast \langle \xi''\vert.
\end{displaymath} (45)

If we left-multiply Eq. (44) by $\langle \xi''\vert$, right-multiply the above equation by $\vert\xi'\rangle$, and take the difference, we obtain

\begin{displaymath}
(\xi' - \xi''^\ast) \langle \xi''\vert\xi'\rangle = 0.
\end{displaymath} (46)

Suppose that the eigenvalues $\xi'$ and $\xi''$ are the same. It follows from the above that

\begin{displaymath}
\xi' = \xi'^\ast,
\end{displaymath} (47)

where we have used the fact that $\vert\xi'\rangle$ is not the null ket. This proves that the eigenvalues are real numbers. Suppose that the eigenvalues $\xi'$ and $\xi''$ are different. It follows that

\begin{displaymath}
\langle \xi''\vert\xi'\rangle = 0,
\end{displaymath} (48)

which demonstrates that eigenkets corresponding to different eigenvalues are orthogonal.

(ii) The eigenvalues associated with eigenkets are the same as the eigenvalues associated with eigenbras. An eigenbra of $\xi$ corresponding to an eigenvalue $\xi'$ is defined

\begin{displaymath}
\langle \xi'\vert\xi = \langle \xi'\vert\xi'.
\end{displaymath} (49)

(iii) The dual of any eigenket is an eigenbra belonging to the same eigenvalue, and conversely.

You must to post a comment.
Last Modified
09:38, 2 Oct 2013

Tags

Classifications

(not set)
(not set)

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use