Skip to main content
Chemistry LibreTexts

Postulate 2: Quantum Mechanics

  • Page ID
    20837
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    If a system is in a quantum state represented by a wavefunction \(\psi\), then

    \[ P = \int \Psi^2 \;dV\]

    is the probability that in a position measurement at time \(t\) the particle will be detected in the infinitesimal volume \(dV\).

    Discussion

    The wavefunction is interpreted to be the probability amplitude and the absolute square of the wavefunction, \(Ψ^*(r,t)Ψ(r,t)\), is interpreted to be the probability density at time t. A probability density times a volume is a probability, so for one particle

    \[\Psi^*(x_1,y_1,z_1,t)\Psi(x_1,y_1,z_1,t)dx_1dy_1dz_1\]

    is the probability that the particle is in the volume \(dx\;dy\;dz\) located at \(x_l, y_l, z_l\) at time \(t\). For a many particle system, we write the volume element as \(dτ = dx_1dy_1dz_1\dots dx_ndy_ndz_n\); and \(Ψ^*(r,t)Ψ(r,t)dτ\) is the probability that particle 1 is in the volume \(dx_ldy_ldz_1\) at \(x_ly_lz_l\) and particle 2 is in the volume \(dx_2dy_2dz_2\) at \(x_2y_2z_2\), etc. Because of this probabilistic interpretation, the wavefunction must be normalized.

    \[ \int \limits _{all space} \Psi ^* (r, t) \psi (r , t) d \tau = 1 \tag {3-38}\]

    The integral sign here represents a multi-dimensional integral involving all coordinates: \(x_l \dots z_n\).

    .


    Postulate 2: Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?