If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

GeoWiki.png
ChemWiki: The Dynamic Chemistry E-textbook > Physical Chemistry > Quantum Mechanics > 9. The Hydrogen Atom > Virtual: Atomic Orbitals

MindTouch
Copyright (c) 2006-2014 MindTouch Inc.
http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Virtual: Atomic Orbitals

Table of Contents
No headers
Topic Concepts Experiment
Atomic Orbitals
Atomic Orbitals (single window)
Isosurfaces of various atomic orbitals and some hybrid orbitals are displayed.  
Orbitals Isosurfaces, radial distribution plots, and electron density plots of various atomic orbitals are displayed.  
Graphical Representations of Orbitals The quantum numbers for hydrogen orbitals are explained. Three ways of representing orbitals (radial distribution, electron density, and isosurface plots) are described. A radial distribution plot, an electron density plot, and a virtual reality isosurface plot for the hydrogen 1s orbital are displayed to illustrate the significance and use of each type of orbital representation.
s Orbitals The quantum numbers for s orbitals are identified. The shape of s orbitals is explored. For s orbitals with various principal quantum numbers, radial distribution, electron density, and isosurface plots are examined to determine the number and shapes of nodal surfaces and the region where the electron is most likely to be found.
p Orbitals The quantum numbers for p orbitals are identified. The shape and orientations of p orbitals are explored. For p orbitals with various principal quantum numbers, radial distribution, electron density, and isosurface plots are examined to determine the number and shapes of nodal surfaces.
d Orbitals The quantum numbers for d orbitals are identified. The shape and orientations of d orbitals are explored. For d orbitals with various principal quantum numbers, radial distribution, electron density, and isosurface plots are examined to determine the number and shapes of nodal surfaces.
Sizes of Atomic Orbitals The shell designations for atomic orbitals are presented. A virtual reality isosurface display is used to compare sets of atomic orbitals with various quantum numbers. This display allows direct comparison of the sizes of the orbitals.
Effective Nuclear Charge The effect of shielding and the concept of an effective nuclear charge are explained. A virtual reality isosurface display is used to compare the sizes of hydrogen 1s and 2s orbitals with various effective nuclear charges with the sizes of fluorine 1s and 2s orbitals.
Effective Nuclear Charge and Orbital Size Slater rules for predicting shielding factors and Zeff are introduced. A virtual reality isosurface display is used to compare the sizes of a hydrogen s orbital with a user-defined Zeff and an s orbital of a multi-electron atom. The best Zeff for the s orbital of the multi-electron atom is determined by matching the sizes of the orbitals and this value is compared with that predicted by the Slater rules.
Hybrid Orbitals The origin and significance of hybrid orbitals is explained and illustrated with electron density plots and energy diagrams.  
Geometry of Hybrid Orbitals The purpose of hybrid orbitals is explained. Small balls are arranged in a linear, trigonal planar, or tetrahedral geometry. Various hybrid orbitals may be displayed and oriented towards the balls. Only the proper hybridization scheme will provide a set of orbitals that can simultaneously be directed at all of the balls.

Template:Blauch

You must to post a comment.
Last Modified
09:40, 2 Oct 2013

Tags

Classifications

(not set)
(not set)

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use