Skip to main content
Chemistry LibreTexts

10.5.2: The canonical ensemble

  • Page ID
    5257
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In analogy to the classical canonical ensemble, the quantum canonical ensemble is defined by

    \[\begin{align*} \rho &= e^{-\beta H} \\[4pt] f(E_i) &= e^{-\beta E_i} \end{align*} \]

    Thus, the quantum canonical partition function is given by

    \[\begin{align*} Q(N,V,T) &= {\rm Tr}(e^{-\beta H}) \\[4pt] &= \sum_i e^{-\beta E_i} \end{align*} \]

    and the thermodynamics derived from it are the same as in the classical case:

    \[\begin{align*} A (N, V, T ) &= -{1 \over \beta}\ln Q(N,V,T) \\[4pt] E (N, V, T )  &=-{\partial \over \partial \beta}\ln Q(N,V,T) \\[4pt]  P (N, V, T) &= {1 \over \beta}{\partial \over \partial V}\ln Q(N,V,T) \end{align*}\]

    etc. Note that the expectation value of an observable \(A\) is

    \[\langle A \rangle = {1 \over Q}{\rm Tr}(Ae^{-\beta H}) \nonumber \]

    Evaluating the trace in the basis of eigenvectors of \(H\) (and of \( {\rho } \) ), we obtain

    \[\begin{align*}  \langle A \rangle &= {1 \over Q}\sum_i \langle E_i\vert Ae^{-\beta H} \vert E_i \rangle \\[4pt] &= {1 \over Q}\sum_i e^{-\beta E_i} \langle E_i\vert A\vert E_i\rangle \end{align*}\]

    The quantum canonical ensemble will be particularly useful to us in many things to come.


    This page titled 10.5.2: The canonical ensemble is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.