If you like us, please share us on social media.

The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki: The Dynamic Chemistry E-textbook > Physical Chemistry > Thermodynamics > Ideal Systems > Thermodynamics of Mixing > Entropy of Mixing

MindTouch

Copyright (c) 2006-2014 MindTouch Inc.

http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense,
resell, rent, lease, distribute, market, commercialize or otherwise
transfer rights or usage to: (a) the Software, (b) any modified version
or derivative work of the Software created by you or for you, or (c)
MindTouch Open Source (which includes all non-supported versions of
MindTouch-developed software), for any purpose including timesharing or
service bureau purposes; (ii) remove or alter any copyright, trademark
or proprietary notice in the Software; (iii) transfer, use or export the
Software in violation of any applicable laws or regulations of any
government or governmental agency; (iv) use or run on any of your
hardware, or have deployed for use, any production version of MindTouch
Open Source; (v) use any of the Support Services, Error corrections,
Updates or Upgrades, for the MindTouch Open Source software or for any
Server for which Support Services are not then purchased as provided
hereunder; or (vi) reverse engineer, decompile or modify any encrypted
or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Entropy of Mixing

A gas will always flow into a newly available volume and does so because its molecules are rapidly bouncing off one another and hitting the walls of their container, readily moving into a new allowable space. It follows from the second law of thermodynamics that a process will occur in the direction towards a more probable state. In terms of entropy, this can be expressed as a system going from a state of lesser probability (less microstates) towards a state of higher probability (more microstates). This corresponds to increasing the W in the equation \( S=k_B\ln W \).

For our example, we shall again consider a simple system of two ideal gases, A and B, with a number of moles \( n_A \) and \( n_B \), at a certain constant temperature and pressure in volumes of \( V_A \) and \( V_B \), as shown in Figure 1. These two gases are separated by a partition so they are each sequestered in their respective volumes. If we now remove the partition (like opening a window in the example above), we expect the two gases to randomly diffuse and form a homogenous mixture as we see in Figure 2.

**Figure 1. **(Left) Two Gases \( A \) and \( B \) in their respective volumes and (right) A homogenous mixture of gases \( A \) and \( B \).

To calculate the entropy change, let us treat this mixing as two separate gas expansions, one for gas A and another for B. From the statistical definition of entropy, we know that

\[ \Delta S=nR\ln \dfrac{V_2}{V_1} \;.\]

Now, for each gas, the volume \( V_1 \) is the initial volume of the gas, and \( V_2 \) is the final volume, which is both the gases combined, \( V_A+V_B \). So for the two separate gas expansions,

\[ \Delta S_A=n_A R\ln \dfrac{V_A+V_B}{V_A} \]

\[ \Delta S_B=n_B R\ln \dfrac{V_A+V_B}{V_B} \]

So to find the total entropy change for both these processes, because they are happening at the same time, we simply add the two changes in entropy together.

\[ \Delta_{mix}S = \Delta S_{A}+\Delta S_{B}=n_{A}R\ln \dfrac{V_{A}+V_{B}}{V_{A}}+n_{B}R\ln \dfrac{V_{A}+V_{B}}{V_{B}} \]

Recalling the ideal gas law, PV=nRT, we see that the volume is directly proportional to the number of moles (Avogadro's Law), and since we know the number of moles we can substitute this for the volume:

\[ \Delta_{mix}S=n_{A}R\ln \dfrac{n_{A}+n_{B}}{n_{A}}+n_{B}R\ln \dfrac{n_{A}+n_{B}}{n_{B}} \]

Now we recognize that the inverse of the term \( \frac{n_{A}+n_{B}}{n_{A}} \) is the mole fraction \( x_{A}=\frac{n_{A}}{n_{A}+n_{B}} \), and taking the inverse of these two terms in the above equation, we have:

\[ \Delta_{mix}S=-n_{A}R\ln \dfrac{n_A}{n_A+n_B}-n_BR\ln \dfrac{n_A}{n_A+n_B}x_{B} = -n_A R\ln x_A -n_B R\ln x_B \]

since \(\ln x^{-1}=-\ln x\) from the rules for logarithms. If we now factor out R from each term:

\[ \Delta_{mix}S=-R(n_{A}\ln x_{A}+n_{B}\ln x_{B}) \]

represents the equation for the entropy change of mixing. This equation is also commonly written with the total number of moles:

\[ \Delta_{mix}S=-nR(x_A \ln x_A+x_B\ln x_B) \].

where the total number of moles is \( n=n_A+n_B \)

Notice that when the two gases will be mixed, their mole fraction will be less than one, making the term inside the parentheses negative, and thus the entropy of mixing will always be positive. This observation makes sense, because as you add a component to another for a 2-component solution, the mole fraction of the other component will decrease, and the log of a number less than 1 is negative. Multiplied by the negative in the front of the equation gives a positive quantity. This equation also applies to ideal solutions as well as ideal gases.

- Chang, Raymond. Physical Chemistry for the Biosciences. Sausalito, California: University Science Books, 2005.

- Konstantin Malley (UCD)

Last modified

16:20, 15 Dec 2013

**Analytical Chemistry**

**Biological Chemistry**

**Inorganic Chemistry**

**Organic Chemistry**

**Physical Chemistry**

**Theoretical Chemistry**

**Cal Poly Pomona**

**Diablo Valley College**

**Hope College**

**Howard University**

**Purdue**

**Sacramento City College**

**UC Davis**

**UC Irvine**

**General Chemistry**

**Analytical Chemistry**

**Organic Chemistry**

**Physical Chemistry**

**Theoretical Chemistry**

An NSF funded Project

- © Copyright 2015 Chemwiki

Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use