If you like us, please share us on social media.

The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki: The Dynamic Chemistry E-textbook > Physical Chemistry > Thermodynamics > Thermodynamic Cycles > Carnot Cycle

MindTouch

Copyright (c) 2006-2014 MindTouch Inc.

http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense,
resell, rent, lease, distribute, market, commercialize or otherwise
transfer rights or usage to: (a) the Software, (b) any modified version
or derivative work of the Software created by you or for you, or (c)
MindTouch Open Source (which includes all non-supported versions of
MindTouch-developed software), for any purpose including timesharing or
service bureau purposes; (ii) remove or alter any copyright, trademark
or proprietary notice in the Software; (iii) transfer, use or export the
Software in violation of any applicable laws or regulations of any
government or governmental agency; (iv) use or run on any of your
hardware, or have deployed for use, any production version of MindTouch
Open Source; (v) use any of the Support Services, Error corrections,
Updates or Upgrades, for the MindTouch Open Source software or for any
Server for which Support Services are not then purchased as provided
hereunder; or (vi) reverse engineer, decompile or modify any encrypted
or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Carnot Cycle

- 1. Introduction
- 2. The Carnot Cycle
- 3. P-V Diagram
- 4. T-S Diagram
- 5. Efficiency
- 6. Problems
- 7. Internal Links
- 8. References
- 9. Contributors

The Carnot cycle has the greatest efficiency possible of an engine (although other cycles have the same efficiency) based on the assumption of the absence of incidental wasteful processes such as friction, and the assumption of no conduction of heat between different parts of the engine at different temperatures.

In the early 19th century, steam engines came to play an increasingly important role in industry and transportation. However, a systematic set of theories of the conversion of thermal energy to motive power by steam engines had not yet been developed. Nicolas Léonard Sadi Carnot (1796-1832), a French military engineer, published *Reflections on the Motive Power of Fire *in 1824. The book proposed a generalized theory of heat engines, as well as an idealized model of a thermodynamic system for a heat engine that is now known as thea Carnot cycle. Carnot developed the foundation of the second law of thermodynamics, and is often described as the "Father of thermodynamics."

**Figure 1**. An ideal gas-piston model of the Carnot cycle.

The Carnot cycle consists of the following four processes:

- A reversible isothermal gas expansion process. In this process, the ideal gas in the system absorbs
*q*amount heat from a heat source at a high temperature T_{in}_{h}, expands and does work on surroundings. - A reversible adiabatic gas expansion process. In this process, the system is thermally insulated. The gas continues to expand and do work on surroundings, which causes the system to cool to a lower temperature, T
_{l}. - A reversible isothermal gas compression process. In this process, surroundings do work to the gas at T
_{l}, and causes a loss of heat,*q*._{out} - A reversible adiabatic gas compression process. In this process, the system is thermally insulated. Surroundings continue to do work to the gas, which causes the temperature to rise back to T
_{h}.

The P-V diagram of the Carnot cycle is shown in Figure 2. In isothermal processes I and III, ∆U=0 because ∆T=0. In adiabatic processes II and IV, q=0. Work, heat, ∆U, and ∆H of each process in the Carnot cycle are summarized in Table 1.

**Figure 2**. A P-V diagram of the Carnot Cycle.

Process | w | q | ΔU | ΔH |

I | \(-nRT_{h}\ln\left(\dfrac{V_{2}}{V_{1}}\right)\) | \(nRT_{h}\ln\left(\dfrac{V_{2}}{V_{1}}\right)\) | 0 | 0 |

II | \(n\bar{C_{v}}(T_{l}-T_{h})\) | 0 | \(n\bar{C_{v}}(T_{l}-T_{h})\) | \(n\bar{C_{p}}(T_{l}-T_{h})\) |

III | \(-nRT_{l}\ln\left(\dfrac{V_{4}}{V_{3}}\right)\) | \(nRT_{l}\ln\left(\dfrac{V_{4}}{V_{3}}\right)\) | 0 | 0 |

IV | \(n\bar{C_{v}}(T_{h}-T_{l})\) | 0 | \(n\bar{C_{v}}(T_{h}-T_{l})\) | \(n\bar{C_{p}}(T_{h}-T_{l})\) |

Full Cycle | \(-nRT_{h}\ln\left(\dfrac{V_{2}}{V_{1}}\right)-nRT_{l}\ln\left(\dfrac{V_{4}}{V_{3}}\right)\) | \(nRT_{h}\ln\left(\dfrac{V_{2}}{V_{1}}\right)+nRT_{l}\ln\left(\dfrac{V_{4}}{V_{3}}\right)\) | 0 | 0 |

The T-S diagram of the Carnot cycle is shown in Figure 3. In isothermal processes I and III, ∆T=0. In adiabatic processes II and IV, ∆S=0 because dq=0. ∆T and ∆S of each process in the Carnot cycle are shown in Table 2.

**Figure 3**. A T-S diagram of the Carnot Cycle.

Table 2. Work, heat, and ∆U in the T-S diagram of the Carnot Cycle.

Process | ΔT | ΔS |

I | 0 | \(-nRln\left(\dfrac{V_{2}}{V_{1}}\right)\) |

II | \(T_{l}-T_{h}\) | 0 |

III | 0 | \(-nRln\left(\dfrac{V_{4}}{V_{3}}\right)\) |

IV | \(T_{h}-T_{l}\) | 0 |

Full Cycle | 0 | 0 |

The Carnot cycle is the most efficient engine possible based on the assumption of the absence of incidental wasteful processes such as friction, and the assumption of no conduction of heat between different parts of the engine at different temperatures. The efficiency of the carnot engine is defined as the ratio of the energy output to the energy input.

\[\text{efficiency} =\dfrac{net \; work \; done \; by \; heat \; engine}{heat \; absorbed \; by \; heat \;engine}\]

\[=\dfrac{-w_{sys}}{q_{h}}\]

\[=\dfrac{nRT_{h}\ln\left(\dfrac{V_{2}}{V_{1}}\right)+nRT_{l}\ln \left(\dfrac{V_{4}}{V_{3}}\right)}{nRT_{h}\ln\left(\dfrac{V_{2}}{V_{1}}\right)}\]

Since processes II (2-3) and IV (4-1) are adiabatic,

\[\left(\dfrac{T_{2}}{T_{3}}\right)^{C_{V}/R}=\dfrac{V_{3}}{V_{2}}\]

and

\[\left(\dfrac{T_{1}}{T_{4}}\right)^{C_{V}/R}=\dfrac{V_{4}}{V_{1}}\]

And since *T*_{1} = *T*_{2} and *T*_{3} = *T*_{4},

\[\dfrac{V_{3}}{V_{4}}=\dfrac{V_{2}}{V_{1}}\]

Therefore,

\[\text{efficiency}=\dfrac{nRT_{h}\ln\left(\dfrac{V_{2}}{V_{1}}\right)-nRT_{l}\ln\left(\dfrac{V_{2}}{V_{1}}\right)}{nRT_{h}\ln\left(\dfrac{V_{2}}{V_{1}}\right)}\]

\[\boxed{\text{efficiency}=\dfrac{T_{h}-T_{l}}{T_{h}}}\]

- You are now operating a Carnot engine at 40% efficiency, which exhausts heat into a heat sink at 298 K. If you want to increase the efficiency of the engine to 65%, to what temperature would you have to raise the heat reservoir?
- A Carnot engine absorbed 1.0 kJ of heat at 300 K, and exhausted 400 J of heat at the end of the cycle. What is the temperature at the end of the cycle?
- 3. An indoor heater operating on the Carnot cycle is warming the house up at a rate of 30 kJ/s to maintain the indoor temperature at 72 ºF. What is the power operating the heater if the ourdoor temperature is 30 ºF?

- Goldstein, M. J. Chem. Educ.,
**1980**,*57,*114-116 - Bader, M. J. Chem. Educ.,
**1973**,*50*, 834 - W. F. Luder. J. Chem. Educ.,
**1944**,*21*, 600-601 - Salter, C. J. Chem. Educ.,
**2000**, 77, 1027-1030

- XiSen Hou (Hope College)

Last modified

09:06, 5 Jan 2015

**Analytical Chemistry**

**Biological Chemistry**

**Inorganic Chemistry**

**Organic Chemistry**

**Physical Chemistry**

**Theoretical Chemistry**

**Cal Poly Pomona**

**Diablo Valley College**

**Florida State U**

**Hope College**

**Howard University**

**Purdue**

**Sacramento City College**

**UC Davis**

**UC Irvine**

**Zumdahl 9 ^{ed}**

An NSF funded Project

- © Copyright 2015 Chemwiki

Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use