If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki: The Dynamic Chemistry E-textbook > Theoretical Chemistry > Chemical Bonding > General Principles > Born Oppenheimer Approximation

Copyright (c) 2006-2014 MindTouch Inc.

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Born Oppenheimer Approximation

Table of Contents

The Born-Oppenheimer approximation is a way to simplify the complicated Schrödinger equation for a molecule. The nucleus and electrons are attracted to each other with the same magnitude of electric charge, thus they exert the same force and momentum. While exerting the same kind of momentum, the nucleus, with a much larger mass in comparison to electron’s mass, will have a very small velocity that is almost negligible. Born-Oppenheimer takes advantage of this phenomenon and makes the assumption that since the nucleus is way heavier in mass compared to the electron, its motion can be ignored while solving the electronic Schrödinger equation; that is,  the nucleus is assumed to be stationary while electrons move around it. The motion of the nuclei and the electrons can be separated and the electronic and nuclear problems can be solved with independent wavefunctions.


The wavefunction for the molecule thus becomes:

Ψmolecule= Ψelectronx Ψnuclei

The principle of Born-Oppenheimer can be applied to calculate the bond length energy between molecules. By focusing on the specific separation between nucleus and electron, their wavefunction can be calculated. Thus, a molecule’s energy in relationship with its bond length can be examined.



  1. McQuarrie, Donald A. Physical Chemistry: A Molecular Approach. Sausalito: University Science Books, 1997.
  2. Que, Lawrence Jr. Physical Methods in Bioinorganic Chemistry. Sausalito: University Science Books, 2000.

You must to post a comment.
Last Modified
15:50, 22 Jun 2014



(not set)
(not set)

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use