Skip to main content
Chemistry LibreTexts

Molecular orbital approach (Ligand Field Theory)

  • Page ID
    11141
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A Molecular Orbital Diagram using only sigma bonding can be constructed for a general Oh complex:

    Bond Order = 6 - n(eg)/2

    The sigma bonds are largely ligand based orbitals but take the appearance of d2sp3 hybrid orbitals about the metal.

    The nb and lowest energy σ* orbitals are similar to the Crystal Field Theory description. The nb orbitals are strictly d like (dxy, dyz, dxz) and the σ* are mostly d orbital like (dx2–y2, dz2).

    Inclusion of π bonding means using the t2g orbitals for overlap:

    If the t2g orbitals are empty, then the ligand needs filled π orbitals to create a M-L π bond; the t2g orbitals become somewhat antibonding, are destabilized, and 10Dq is reduced.

    If the t2g orbitals are occupied, then the ligand needs unfilled π* orbitals to create the M-L π bond; the t2g orbitals become somewhat bonding, are stabilized, and 10 Dq is increased.

    This is known as π backbonding. It is the reason CO is such a strong ligand.


    Molecular orbital approach (Ligand Field Theory) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?