If you like us, please share us on social media.

The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki: The Dynamic Chemistry E-textbook > Under Construction > Math Basics > Differentiation

MindTouch

Copyright (c) 2006-2014 MindTouch Inc.

http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense,
resell, rent, lease, distribute, market, commercialize or otherwise
transfer rights or usage to: (a) the Software, (b) any modified version
or derivative work of the Software created by you or for you, or (c)
MindTouch Open Source (which includes all non-supported versions of
MindTouch-developed software), for any purpose including timesharing or
service bureau purposes; (ii) remove or alter any copyright, trademark
or proprietary notice in the Software; (iii) transfer, use or export the
Software in violation of any applicable laws or regulations of any
government or governmental agency; (iv) use or run on any of your
hardware, or have deployed for use, any production version of MindTouch
Open Source; (v) use any of the Support Services, Error corrections,
Updates or Upgrades, for the MindTouch Open Source software or for any
Server for which Support Services are not then purchased as provided
hereunder; or (vi) reverse engineer, decompile or modify any encrypted
or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Recall the basic definition for a derivative

### Functions of more than one variable

This definition gives the instantaneous slope of a line tangent to a curve.

We also write the derivative as f’(x) [f prime of x]. From the above equation with just a little algebra you can derive the general formula for polynomials

There are a few basic rules that will allow you to apply this to a large number of functions.

The product rule states that

The quotient rule states that

If you have a hard time remembering the order of f(x) and g(x) in the quotient rule you can also treat f(x)/g(x) as the product of f(x) and 1/g(x). This has the form

Which is completely equivalent to the quotient rule. Note that we used the polynomial rule here since 1/g(x) = g(x)-1. In general, if you are given a function in the denominator just write as a negative exponent first. This will make taking the derivative much easier.

Example,

where we treated the function 1/f(x) as f(x)-1 and therefore n = -1 and nf(x)n-1= (-1)f(x)-2. In this example, we have used the chain rule. The chain rule applies when one function is “buried” inside another, e.g. g(f(x)).

First, take the derivative with respect to g(x) treating the whole of f(x) as the variable, then take the derivative with respect to f(x).

Example,

In this example, we take the derivative of a Gaussian function with respect to x. Note that here g(f(x)) = ef(x) and f(x) = -ax2. The derivative of an exponential is the exponential itself times the derivative of the exponent.

If we have a function of more than one variable, f(x,y) we can take the derivative with respect to either one. These are called partial derivatives with respect to x or y (or whatever the variable is).

The partial derivative with respect to x is

The partial derivative with respect to y is

The total derivative is

We say the total derivative is an exact differential is the second cross derivatives are equal

If these cross derivatives are not equal the total derivative is not an exact differential.

In physical chemistry this is important because

**State functions are exact differentials**

**Path functions are inexact differentials**

A state function has the same magnitude regardless of the path taken.

The integral has the same magnitude regardless of the path taken if the total derivative of x is exact.

If the total derivative is not exact then

For example, in thermodynamics we show that the internal energy is a state function, but the work and the heat are path functions.

Last Modified

10:09, 2 Oct 2013

**Analytical Chemistry**

**Biological Chemistry**

**Inorganic Chemistry**

**Organic Chemistry**

**Physical Chemistry**

**Theoretical Chemistry**

**Cal Poly Pomona**

**Diablo Valley College**

**Florida State U**

**Hope College**

**Howard University**

**Purdue**

**Sacramento City College**

**UC Davis**

**UC Irvine**

**Zumdahl 9 ^{ed}**

An NSF funded Project

- © Copyright 2014 Chemwiki

Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use