If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.

GeoWiki.png
ChemWiki: The Dynamic Chemistry E-textbook > Wikitexts > UC Davis > UCD Chem 124A: Kauzlarich > ChemWiki Module Topics > Electronic Quantum Numbers

MindTouch
Copyright (c) 2006-2014 MindTouch Inc.
http://mindtouch.com

This file and accompanying files are licensed under the MindTouch Master Subscription Agreement (MSA).

At any time, you shall not, directly or indirectly: (i) sublicense, resell, rent, lease, distribute, market, commercialize or otherwise transfer rights or usage to: (a) the Software, (b) any modified version or derivative work of the Software created by you or for you, or (c) MindTouch Open Source (which includes all non-supported versions of MindTouch-developed software), for any purpose including timesharing or service bureau purposes; (ii) remove or alter any copyright, trademark or proprietary notice in the Software; (iii) transfer, use or export the Software in violation of any applicable laws or regulations of any government or governmental agency; (iv) use or run on any of your hardware, or have deployed for use, any production version of MindTouch Open Source; (v) use any of the Support Services, Error corrections, Updates or Upgrades, for the MindTouch Open Source software or for any Server for which Support Services are not then purchased as provided hereunder; or (vi) reverse engineer, decompile or modify any encrypted or encoded portion of the Software.

A complete copy of the MSA is available at http://www.mindtouch.com/msa

Electronic Quantum Numbers

Introduction

There are four quantum numbers (\(n\), \(l\), \(m_{l}\), \(m_{s}\)). No two electrons in the same atom can have the same four quantum numbers. Each quantum number describes a different aspect of the electron and its orbital. These numbers are obtained from the solution of the Schrödinger Equation for atoms in spherical coordinates.

n, the principle quantum number

\(n\)tells you about the size of the orbital.  It is related to how far the electron is from the atom.  It is also related to the energy of the electron. \(n\)can be any positive integer number.  An orbital has \(n-1\)radial nodes as well, which describe a radius at which the probability of finding the electron is 0.

l, azimuthal quantum number

lt tells you about the angular momentum of the electron in the orbital.  It defines the shape of the orbital.  lt can be any integer between (and including) 0 and (\(n-1\)).  Each orbital has \(l\)planar nodes.
Some examples of orbitals with different \(l\):

\(l=0\)is an s orbital, with no planar nodes.

S orbitals.jpg

\(l=1\)gives a p orbital, which has one planar node.

p orbital 1.JPG

ml, magnetic quantum number

\(m_{l}\) tells you about the angular momentum projected on to the z axis. It tells you of the orientation of the orbital. It can be any integer between \(-l\) and \(l\).

\(l=1\) has 3 different (but degenerate) \(m_{l}\) possible values:-1,0 or 1. 

\(p_{x}\)

px orbital 1.JPG

\(p_{y}\)

py orbital 1.JPG

\(p_{z}\)

pz orbital 1.JPG

ms spin projection quantum number

\(m_{s}\)tells you about the spin of the electron.  An electron is a fermion, a type of quantum particle which is only allowed to have \(m_{s}\)equal to -1/2 or 1/2.

Pauli Exclusion Principle

The Pauli Exclusion principle states that no two identical fermions can share the same quantum state simultaneously.  An electron, being a fermion, obeys this principle, so no two electrons in the same atom can have the same quantum numbers. Each orbital has space for 2 electrons, with \(m_{s}\) values with opposite sign. These electrons are considered spin-paired.

Energies of the Orbitals

The energies of the orbitals depend solely on \(n\) and \(l\) so there are degenerate states that result from various \(m_{l}\) values.  For example, there are 3 p orbitals, all of which are equal in energy and therefore degenerate. Here is a table of possible quantum number arrangements and the corresponding orbitals from \(n=1\) to \(n=5\):

\(n\) \(l\) \(m_{l}\) \(m_{s}\) Orbital
\(1\) \(0\) \(0\) \(\pm \frac{1}{2}\) \(1s\)
\(2\) \(0\) \(0\) \(\pm \frac{1}{2}\) \(2s\)
\(2\) \(1\) \(\pm 1\) or \(0\) \(\pm \frac{1}{2}\) \(2p_{x}, 2p_{y} \; or  \; 2p_{z}\)
\(3\) \(0\) \(0\) \(\pm \frac{1}{2}\) \(3s\)
\(3\) \(1\) \(\pm 1\) or \(0\) \(\pm \frac{1}{2}\) \( 3p_{x}, 3p_{y} \; or  \; 3p_{z}\)
\(3\) \(2\) \(\pm 2, \pm 1\) or \(0\) \(\pm \frac{1}{2}\) \(3d_{z^2},  3d_{x^2-y^2}, 3d_{xy},\)\(3d_{xz}\; or \; 3d_{yz}\)
\(4\) \(0\) \(0\) \(\pm \frac{1}{2}\) \(4s\)
\(4\) \(1\) \(\pm 1\) or \(0\) \(\pm \frac{1}{2}\) \(4p_{x}, 4p_{y} \; or  \; 4p_{z}\)
\(4\) \(2\) \(\pm 2, \pm 1\) or \(0\) \(\pm \frac{1}{2}\) \(4d_{z^2},  4d_{x^2-y^2}, 4d_{xy},\)\(4d_{xz} \; or  \; 4d_{yz}\)
\(4\) \(3\) \(\pm 3, \pm 2, \pm 1\) or \(0\) \(\pm \frac{1}{2}\) \(4f_{x^3}, 4f_{y^3}, 4f_{z^3},\)\(4f_{x (z^2-y^2)}, 4f_{y (z^2-x^2)},\)\(4f_{z (x^2-y^2)}or  \; 4f_{xyz}\)
\(5\) \(0\) \(0\) \(\pm \frac{1}{2}\) \(5s\)
\(5\) \(1\) \(\pm 1\)or \(0\) \(\pm \frac{1}{2}\) \(5p_{x}, 5p_{y} \; or  \; 5p_{z}\)
\(5\) \(2\) \(\pm 2, \pm 1\) or \(0\) \(\pm \frac{1}{2}\) \(5d_{z^2}, 5d_{x^2-y^2}, 5d_{xy}, 5d_{xz} \; or  \; 5d_{yz}\)
\(5\) \(3\) \(\pm 3, \pm 2, \pm 1\) or \(0\) \(\pm \frac{1}{2}\) \(5f_{x^3}, 5f_{y^3}, 5f_{z^3}, 5f_{x (z^2-y^2)}, 5f_{y (z^2-x^2)}, 5f_{z (x^2-y^2)} or  \; 5f_{xyz}\)
\(5\) \(4\) \(\pm 4, \pm 3, \pm 2, \pm 1\) or \(0\) \(\pm \frac{1}{2}\) \(5g_{z^4}, 5g_{z^3 x}, 5g_{z^3 y}, 5g_{z^{2} xy}, 5g_{z^2 (x^2-y^2)}, 5g_{zx^3}, 5g_{zy^3}, 5g_{xy (x^2-y^2)} \; or 5g_{x^4+y^4} \)

References

  1. J Goldstone, F Wilczek, Fractional quantum numbers on solitons - Physical Review Letters, 1981 - APS
  2. Harris, R. ,2007,  Modern Physics, 2e, Addison Wesley

Problems

  1. How many electrons can have the quantum numbers \(n=2\) and \(l=0\)? List the acceptable values for \(m_{l}\) and \(m_{s}\) for these values.
  2. How many electrons can have the quantum numbers \(n=2\) and \(l=2\)?
  3. Which set of orbitals do the quantum numbers \(n=3\) and \(l=2\)describe? How many radial and planar nodes do these orbitals have?

Solutions

  1. There may be 2 electrons with these quantum numbers, one with \(m_{l}=0\) and \(m_{s}= \frac{1}{2}\) and the other with \(m_{l}=0\) and \(m_{s}= -\frac{1}{2}\).
  2. This is not a permitted value of \(l\)for \(n=2\), since the greatest acceptable value is given by \(l=n-1\).
  3. This represents the 3d orbitals. They have 2 planar orbitals and 0 radial nodes.

Contributors

  • Bryn Ellison

You must to post a comment.
Last Modified
10:15, 2 Oct 2013

Tags

Classifications

(not set)
(not set)

Creative Commons License Unless otherwise noted, content in the UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. Questions and concerns can be directed toward Prof. Delmar Larsen (dlarsen@ucdavis.edu), Founder and Director. Terms of Use